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Abstract

OBJECTIVE—Specification of appropriate personal protective equipment for respiratory 

protection against influenza is somewhat controversial. In a clinical environment, N95 filtering 

facepiece respirators (FFRs) are often recommended for respiratory protection against infectious 

aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols.

METHODS—Five N95 FFR models were challenged with aerosolized viable H1N1 influenza and 

inert polystyrene latex particles at continuous flow rates of 85 and 170 liters per minute. Virus was 

assayed using Madin-Darby canine kidney cells to determine the median tissue culture infective 

dose (TCID50). Aerosols were generated using a Collison nebulizer containing H1N1 influenza 

virus at 1 × 108 TCID50/mL. To determine filtration efficiency, viable sampling was performed 

upstream and downstream of the FFR.

RESULTS—N95 FFRs filtered 0.8-µm particles of both H1N1 influenza and inert origins with 

more than 95% efficiency. With the exception of 1 model, no statistically significant difference in 

filtration performance was observed between influenza and inert particles of similar size. 

Although statistically significant differences were observed for 2 models when comparing the 2 

flow rates, the differences have no significance to protection.

CONCLUSIONS—This study empirically demonstrates that a National Institute for Occupational 

Safety and Health–approved N95 FFR captures viable H1N1 influenza aerosols as well as or 

better than its N95 rating, suggesting that a properly fitted FFR reduces inhalation exposure to 
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airborne influenza virus. This study also provides evidence that filtration efficiency is based 

primarily on particle size rather than the nature of the particle’s origin.

Pandemic influenza poses a significant health threat to the international community as novel 

strains emerge that vary widely in virulence and infectivity.1,2 Which of the primary modes 

of human transmission of influenza3–6—direct contact, inspiration, inhalation, and direct 

spray—are responsible for spreading influenza is a subject of active debate. As a 

consequence, specification of the appropriate personal protective equipment (PPE) for 

respiratory protection against influenza is likewise controversial. For direct-spray 

transmission, a surgical mask may be appropriate for reducing the risk of infection, but it is 

not recommended for protection against aerosol transmission via inhalation or inspiration. In 

accordance with guidance provided by the Centers for Disease Control and Prevention, the 

Occupational Safety and Health Administration (OSHA) mandates that healthcare workers 

wear PPE at least as protective as a properly fitted National Institute for Occupational Safety 

and Health (NIOSH)–certified N95 filtering facepiece respirator (FFR) when exposed to 

some inhalable or inspirable infectious aerosols (eg, severe acute respiratory syndrome, 

tuberculosis, and 2009 H1N1 pandemic influenza).7,8 For use in clinical settings, N95 FFRs 

are sometimes also cleared for sale by the Food and Drug Administration as a medical 

device having fluid-resistant properties and certified by NIOSH. Devices carrying a NIOSH 

certification have shown the ability to remove 95% or more of particles of the conventional 

most-penetrating particle size (MPPS), 0.3 µm (with larger or smaller particles being 

removed more efficiently).9 However, the MPPS for FFRs employing electret media (media 

possessing an electrical charge) is smaller.10

The mechanisms used by FFRs to remove particles from the air are well understood.11 It is 

also well accepted that the composition of particles of similar density does not affect particle 

capture efficiency. Thus, viable and inert particles of equivalent size and mass should be 

removed with the same filtration efficiency. Many studies have been performed to evaluate 

the filtration efficiency of viable microorganisms.12–16 Without exception, they all show that 

viable microorganisms are removed at similar or slightly greater rates than inert particles of 

the same size, supporting the idea that FFR effectiveness against aerosol transmission does 

not need to be reevaluated for every new disease-causing agent. However, even with this 

consistent knowledge base, end users of FFRs still want confirmation that the device is 

capable of removing actual infective agents of interest. We found limited studies evaluating 

FFR performance when challenged with viable influenza aerosols. Zuo et al17 challenged 

N95 FFRs with viable aerosols of human adenovirus serotype 1 and swine influenza H3N2 

but were able to obtain viable data for the adenovirus only upstream of the FFR. Borkow et 

al18 evaluated the antimicrobial efficacy of copper-impregnated N95 FFRs by challenging 

with viable H1N1 aerosols. Their results showed greater than 99% viable filtration 

efficiency (VFE), but they did not correlate their data to inert particles. Our study challenged 

5 FFR models (Table 1) with viable H1N1 influenza aerosols representative of human 

respiratory secretions and compares the VFE to the inert particle filtration efficiency (PFE) 

at 2 flow rates.
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METHODS

H1N1 Virus

Influenza A/PR/8/34 VR-1469 (ATCC VR-95) was propagated in embryonic chicken eggs 

by means of standard World Health Organization protocols.19 Virus titers were determined 

by a median tissue culture infectious dose (TCID50) assay using Madin-Darby canine kidney 

cells (ATCC CCL-34) and cell culture techniques approved by the World Health 

Organization.19 For aerosolization studies, the H1N1 influenza virus was diluted to a 

concentration of 1 × 108 TCID50/mL in an artificial saliva buffer.20 The count median 

diameter (CMD) of the particle size distribution (PSD) of the influenza aerosol in the 

artificial saliva buffer was 0.83 µm, as previously determined using an Aerodynamic Particle 

Sizer (APS) 3321 (TSI).21

Filtration Studies

Five models of NIOSH-approved N95 FFRs, of which 2 models contained antimicrobial 

components (GlaxoSmithKline [GSK] Actiprotect and SafeLife T5000), were used for this 

study (Table 1). The 3 nonantimicrobial models were chosen for their common use in the 

healthcare workplace. The 2 antimicrobial models were selected because they were the only 

2 such models that were commercially available and NIOSH approved. All models were 

tested in triplicate under 2 conditions: (1) an aerosol challenge at the NIOSH-specified 

standard flow rate of 85 liters per minute (LPM) and (2) a morestrenuous aerosol challenge 

of 170 LPM to evaluate FFR performance under extreme conditions. A laboratory-scale 

aerosol tunnel (LSAT; Figure 1) was used to challenge the FFRs with viable influenza and 

inert beads. A complete description of the LSAT has been reported elsewhere.20–22 Prior to 

each test, the LSAT was flushed with purified air for 30 minutes at a flow rate of 50 LPM. 

For each independent test (1 FFR at 1 condition), a FFR was glue-sealed into a 6-

inchdiameter sample holder as described elsewhere21 and then secured into the LSAT via 

stainless steel sanitary fittings. Each FFR was first challenged with 0.8-µm polystyrene latex 

beads (Thermo Scientific). The beads were suspended in sterile water and then placed in a 6-

jet Collison nebulizer (BGI), operating at 20 psi to generate the aerosol. Following a 10-

minute equilibration period, 3 alternating upstream and downstream samples were collected 

using the APS. The air flow was then redirected to a high-efficiency particulate air (HEPA) 

filter, while the Collison nebulizer was replaced with another Collison nebulizer containing 

30 mL of H1N1 influenza diluted to a concentration of 1 × 108 TCID50/mL in artificial 

saliva.

Following a 10-minute equilibration period, alternating viable samples were collected 

through the upstream and downstream ports. All-glass impingers (AGI-30; Ace Glass) 

containing 20 mL of serum-free Eagle’s minimum essential medium (Hyclone Laboratories) 

supplemented with 1% 100× penicillin-streptomycin and 1% 200 mM L-glutamine (Sigma-

Aldrich) were used for collection. To minimize particle loss, the AGI-30s were directly 

attached to the isokinetic sampling ports on the LSAT. Sampling was initiated by opening 

the valve on the port and then applying a vacuum source to the AGI-30, which sampled at 

approximately 12.5 LPM. After 5 minutes, the sampling port was closed, the vacuum was 

turned off, and the AGI-30 was placed on ice until viable plating was performed. A total of 6 
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samples (3 upstream and 3 downstream, alternately sampled) were collected for each FFR. 

Following each run, the FFR was removed and HEPA filters were connected to the sampling 

ports. The LSAT was subsequently flushed with purified air at 60 ± 10 LPM for 3 hours. A 

manometer was used to monitor the pressure drop across the filter during each run.

Data Analysis

Upstream and downstream measurements for the 0.8-µm bead study were collected using 

data from the 0.723–0.925-µm size bins of the APS. The concentration of viable virus (log 

TCID50 per milliliter of extract) collected in the upstream and downstream AGI-30s was 

determined using the Spearman-Kärber formula.23 Equation (1) was used to determine the 

total amount of virus recovered from each sample (20-mL impinger volume). For samples 

with no detectable downstream viable data, half the detection limit (2.5 TCID50 infectious 

dose units) of the viable assay was used to calculate the reduction.24 The VFE of the FFRs 

was determined using equation (2), and the PFE was determined using equation (3). A 2-

tailed paired t test was used to compare the inert (0.8-µm bead) and viable (H1N1 influenza) 

filtration data for each N95 FFR model. The average PFE and VFE values for the 2 flow 

rates were compared using a 2-tailed unpaired t test. A 1-way analysis of variance 

(ANOVA) test with a Bonferroni posttest was used to compare data obtained from the 

antimicrobial and nonantimicrobial FFR models.

Equation (1) is as follows:

(1)

where L is viable H1N1 expressed in units of log10 TCID50 per milliliter and V is sample 

volume. If no viable viruses are present (L = −∞), then LS will be half the detection limit. 

Equation (2) is

(2)

where DLS is downstream log10 TCID50, ULS is upstream log10 TCID50, and n is the 

number of determinations, and equation (3) is

(3)

where U is the upstream particle concentration and D is the downstream particle 

concentration.

RESULTS

The average upstream challenge for all FFR replicates was 1.8 × 103 TCID50per liter of air. 

Under standard flow (85 LPM) parameters, the mean PFE for all FFR models ranged from 

99.72% to 99.999%, and the mean VFE ranged from 98.93% to 99.996% (Table 2). A 

statistical comparison of the 2 data sets demonstrated that there is a significant difference (P 

< .05) between inert and viable particle filtration for only the Kimberly-Clark model (P = .
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02). The SafeLife T5000 provided 1–2 orders of magnitude higher filtration performance, 

exceeding the NIOSH standard for an N100 FFR. Four of the 6 SafeLife T5000 replicates 

produced no detectable virus downstream.

Under high flow (170 LPM) parameters, the mean PFE for all FFR models ranged from 

98.37% to 99.994%, and the mean VFE ranged from 96.29% to 99.995% (Table 3). The 

SafeLife T5000 again provided 1–2 orders of magnitude higher filtration performance. A 

statistical comparison of the 2 data sets demonstrated a significant difference between inert 

and viable particle filtration for only the Kimberly-Clark FFR (P = .02).

A comparison of performances at 85 and 170 LPM was conducted. The Kimberly-Clark 

model demonstrated statistically significant different filtration efficiencies for both inert and 

viable aerosol challenges (P = .003 and .002, respectively). The GSK Actiprotect model was 

found to demonstrate a significant difference only for the inert particles (P = .0006). A 1-

way ANOVA test demonstrated a statistically significant difference between the 

nonantimicrobial FFR models and both the Safelife T5000 and GSK Actiprotect for VFE at 

the 170-LPM condition (P = .0001 and .05, respectively). A significant difference was also 

observed for PFE (P = .0002 and .0003, respectively). No significant difference was found 

between the nonantimicrobial and antimicrobial FFRs at the 85-LPM condition.

DISCUSSION

Previous experimental studies, supported by filtration theory, demonstrate that PFE 

increases with particle size above the MPPS. While it is possible in a laboratory setting to 

artificially generate an influenza aerosol near the MPPS of most FFRs, particles in this size 

range (approximately 0.1 µm) are relatively unstable and are unlikely to exist in practice. In 

actual workplace settings, influenza expelled from humans via respiratory sections is 

typically much larger (approximately 0.8 µm) than the bare virus. We acknowledge the 

existence of divergent reports pertaining to the assessment of particles/droplets derived from 

human respiratory secretions,25–28 but we maintain that use of a 0.8-µm particle is justified 

on the basis of the literature.20

Each N95 FFR model tested as part of this study yielded equivalent VFE and PFE values 

that exceeded 95% (Tables 2 and 3). As NIOSH certification is based on removal of 0.3-µm 

particles, these higher removals are to be expected for the larger particles studied here. 

Although determined to be statistically significant, the differences between PFE and VFE at 

85 LPM for the Kimberly-Clark model (less than 2.6%) are not considered to be meaningful 

because the 95% NIOSH benchmark was met and actual protection is driven more by 

differences in fit (leakage) than filtration performance. Thus, the statistical analysis in this 

case is not instructive and indicates only that the low variability among replicate 

measurements obtained by the particle sizer allows discrimination of the slightly higher 

filtration efficiencies of inert particles from the generally greater variability associated with 

capturing and assaying viable biological particles.

A possible bias introduced in this study is that the methods of analysis for inert and viable 

challenges are different, which may influence the comparison of the VFE and PFE. The PFE 
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is determined using the APS and accounts only for particles whose aerodynamic particle size 

ranges from 0.723 to 0.925 µm. In contrast, the VFE accounts for all particles in the PSD. 

Another bias may be present in the sampling procedure because AGI-30 impingers collect 

larger particles more efficiently,29 as do FFRs. The particles most likely to penetrate the 

FFR fall into a smaller size range, in which capture efficiency by the impinger is lower. 

Another factor that must be considered is the distribution of viable particles within the 

overall PSD, which is not known and may introduce another bias that cannot be accounted 

for. Our data are consistent with values reported by Borkow et al,18 who demonstrated more 

than 95% reduction of VFE in an aerosol (approximately 3.0-µm CMD) containing viable 

influenza, although they sampled by means of impaction rather than impingers and 

performed their testing at a lower flow rate, 28 LPM. Zuo et al17 also provided data showing 

that viable influenza can be removed from the airstream but provided particle-count data 

derived only from a viable challenge of much smaller particles (CMD of less than 0.1 µm), 

which behave much differently.20

The effect of flow rate on N95 FFR performance was assessed by incorporating 2 flow 

conditions into the experimental design. According to 42 CFR 84 subpart K, section 84.181, 

the 85-LPM flow rate is the condition specified by NIOSH for evaluating the performance 

of FFRs. This flow rate was selected to represent a worker’s inhalation at a high work rate. 

However, peak inhalation flow during breathing may be greater than 85 LPM for brief 

periods of time30 and exacerbated further as work intensity is increased. For these reasons, 

we also tested at 170 LPM to provide an extreme challenge to the filter. The overall 

filtration numbers were slightly lower in the higher flow rate (Tables 2 and 3), as would be 

expected for particles smaller than 1 µm. Critical inspection of the data shows that the actual 

difference in filtration performance between the 85- and 170-LPM conditions for the particle 

size studied is negligible (1%–2%). Although statistically significant, these differences are 

merely an indicator of low variability in the data sets and not a physically meaningful 

distinction.

Although the antimicrobial FFR models (SafeLife T5000 and GSK Actiprotect) 

demonstrated considerably higher filtration efficiencies than the nonantimicrobial models, 

they did not provide a significantly greater reduction in viable penetration compared with 

inert particles, and we attribute the increased filtration efficiency to physical means rather 

than antimicrobial properties. These results are in line with what was observed by Borkow et 

al,18 who found no improvement in VFE for FFRs impregnated with copper oxide. The 

SafeLife T5000’s filtration performance actually exceeds the rating for a N100, observed for 

both the inert and the viable H1N1 particles. For the GSK FFR, the lack of reduction in VFE 

due to the antimicrobial was expected, as the manufacturer claims only that the 

antimicrobial is a surface decontaminant. It is of interest to note that the GSK FFR had the 

highest variability for VFE (σ = ±2.5%) among all FFRs tested (Tables 2 and 3). The reason 

for this is unclear; it is possible that the citric acid present on the FFR interferes with the 

viable assay, but as the VFE is lower than the PFE, it might suggest that citrate is protective, 

acting to shield the virus downstream of the FFR. Additional research is necessary to isolate 

the mechanism causing the variability.
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The significance of these findings to healthcare workers is that the data provide a basis to 

estimate the level of protection that a healthcare worker can expect from a respirator during 

exposure to infectious aerosols. Inhalation exposures received by a respirator wearer come 

from a combination of leakage around the face seal, direct penetration through the filter, and 

leakage through other apertures (eg, holes in filters from staples used to secure FFR straps). 

Numerous workplace studies have shown that a properly fitted NIOSH-certified N95 FFR 

will reduce toxic inhalation exposures by a factor of 10 or more.31,32 Controlled leak studies 

conducted using manikin headforms have shown that leak size is the dominant factor 

affecting respirator inward leakage.33 In the workplace, an OSHA-mandated fit test is 

required to ensure that the respirator is capable of fitting the healthcare worker (ie, seals 

tightly to the face to minimize leakage in the face seal area). Because the FFR was sealed 

(ie, a perfect fit) in our experiments, capture efficiencies for viable H1N1 influenza 

exceeding 98.9% at the lowest flow rate represent a best-case scenario in terms of fit. 

However, when some inward leakage during routine respirator wear is factored in, these 

data, combined with the workplace studies cited above, suggest that an N95 FFR is capable 

of reducing inhalational exposure to H1N1 influenza or other infectious aerosols by a factor 

of 10 or greater if properly fitted and used as expected, similar to the attenuation of other 

workplace aerosols.

In conclusion, this study empirically demonstrates that a NIOSH-approved N95 FFR 

captures viable H1N1 influenza aerosols with an efficiency equal to or greater than its N95 

rating, suggesting that a properly fitted FFR reduces inhalation exposure to airborne 

influenza virus. Only 5 FFR models were tested as part of this study, but the findings have 

broad applicability to all properly fitted NIOSH-approved N95 FFRs. This study also 

demonstrates that the N95 FFR models tested remove particles from the airstream, 

indiscriminate of viability. Particles that contain H1N1 influenza are equally affected by 

filtration mechanisms as inert particles of the same size. Although the antimicrobial FFRs 

demonstrated significantly higher VFE, they also showed significantly higher PFE; thus, 

their enhanced performance must be attributed to physical means rather than antimicrobial 

activity.
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FIGURE 1. 
Laboratory-scale aerosol tunnel. FFR, filtering facepiece respirator; HEPA, high-efficiency 

particulate air.
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TABLE 1

Filtering Facepiece Respirators (FFRs) Used in This Study

Manufacturer Model Rating FFR shape Antimicrobial

3M 1860S N95 Cup None

3M 1870 N95 Flat fold None

Kimberly-Clark PFR95 N95 Duck bill None

SafeLife T5000 N95 Cup Triosyn (iodine)

GlaxoSmithKline Actiprotect N95 Cup Virucoat (citric acid)
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TABLE 2

Average Removal Efficiencies of 0.8-µm Particles at 85 Liters per Minute

FFR model Inert, % H1N1 influenza, % P

3M 1860S 99.85 ± 0.10 99.27 ± 0.38 .08

3M 1870 99.90 ± 0.09 99.13 ± 1.36 .45

Kimberly-Clark PFR95 99.72 ± 0.16 98.93 ± 0.36 .02

SafeLife T5000 99.999 ± 0.001 99.996 ± 0.002a .09

GlaxoSmithKline Actiprotect 99.94 ± 0.06 99.23 ± 1.00 .19

a
The data for 1 filtering facepiece respirator (FFR) replicate were below the detection limit.
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TABLE 3

Average Removal Efficiencies of 0.8-µm Particles at 170 Liters per Minute

FFR model Inert, % H1N1 influenza, % P

3M 1860S 99.37 ± 0.39 98.56 ± 0.87 .13

3M 1870 99.96 ± 0.03 99.59 ± 0.27 .14

Kimberly-Clark PFR95 98.37 ± 0.32 96.29 ± 0.56 .02

SafeLife T5000 99.994 ± 0.009 99.995 ± 0.002a .90

GlaxoSmithKline Actiprotect 99.23 ± 0.15 96.29 ± 2.49 .09

a
The data for all 3 filtering facepiece respirator (FFR) replicates were below the detection limit.
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